Умови перпендикулярності двох прямих у просторі. Паралельні прямі, ознаки та умови паралельності прямих. Відстань від точки до прямої

КУТ між площинами

Розглянемо дві площини α 1 і α 2 задані відповідно рівняннями:

Під кутомміж двома площинами розумітимемо один із двогранних кутів, утворених цими площинами. Очевидно, що кут між нормальними векторами і площин 1 і 2 дорівнює одному із зазначених суміжних двогранних кутів або . Тому . Т.к. і , то

.

приклад.Визначити кут між площинами x+2y-3z+4=0 та 2 x+3y+z+8=0.

Умови паралельності двох площин.

Дві площини α 1 і α 2 паралельні тоді і тільки тоді, коли їх нормальні вектори і паралельні, а отже .

Отже, дві площини паралельні один одному тоді і лише тоді, коли коефіцієнти за відповідних координат пропорційні:

або

Умови перпендикулярності площин.

Зрозуміло, що дві площини перпендикулярні і тоді, коли їх нормальні вектори перпендикулярні, отже, або .

Таким чином, .

приклади.

ПРЯМА В ПРОСТОРІ.

ВЕКТОРНЕ РІВНЯННЯ ПРЯМОЮ.

ПАРАМЕТРИЧНІ РІВНЯННЯ ПРЯМИЙ

Положення прямий у просторі цілком визначається завданням якоїсь її фіксованої точки М 1 і вектор , паралельний цій прямій.

Вектор , паралельний прямий, називається напрямнимвектор прямий.

Отже, хай пряма lпроходить через точку М 1 (x 1 , y 1 , z 1), що лежить на прямій паралельно вектору.

Розглянемо довільну точку М(x, y, z)на прямий. З малюнка видно, що .

Вектори та колінеарні, тому знайдеться таке число t, що , де множник tможе набувати будь-яке числове значення в залежності від положення точки Mна прямий. Множник tназивається параметром. Позначивши радіус-вектори точок М 1 та Мвідповідно через і, отримуємо. Це рівняння називається векторнимрівнянням прямої. Воно показує, що кожному значення параметра tвідповідає радіус-вектор деякої точки М, що лежить на прямий.

Запишемо це рівняння у координатній формі. Зауважимо, що , і звідси

Отримані рівняння називаються параметричнимирівняннями прямий.

При зміні параметра tзмінюються координати x, yі zі крапка Мпереміщається прямою.


КАНОНІЧНІ РІВНЯННЯ ПРЯМИЙ

Нехай М 1 (x 1 , y 1 , z 1) - точка, що лежить на прямій l, і - Її напрямний вектор. Знову візьмемо на пряму довільну точку М(x, y, z)і розглянемо вектор.

Зрозуміло, що вектори та колінеарні, тому їх відповідні координати мають бути пропорційними, отже,

канонічнірівняння прямої.

Зауваження 1.Зауважимо, що канонічні рівняння прямої можна було отримати з параметричних, виключивши параметр t. Справді, з параметричних рівнянь отримуємо або .

приклад.Записати рівняння прямої у параметричному вигляді.

Позначимо , звідси x = 2 + 3t, y = –1 + 2t, z = 1 –t.

Примітка 2.Нехай пряма перпендикулярна до однієї з координатних осей, наприклад осі Ox. Тоді напрямний вектор прямий перпендикулярний Ox, отже, m=0. Отже, параметричні рівняння прямий набудуть вигляду

Виключаючи з рівнянь параметр t, Отримаємо рівняння прямий у вигляді

Проте й у разі умовимося формально записувати канонічні рівняння прямої як . Таким чином, якщо в знаменнику одного з дробів стоїть нуль, то це означає, що пряма перпендикулярна до відповідної координатної осі.

Аналогічно, канонічним рівнянням відповідає пряма перпендикулярна до осей Oxі Ойабо паралельна осі Oz.

приклади.

ЗАГАЛЬНІ РІВНЯННЯ ПРЯМОГО, ЯК ЛІНІЇ ПЕРЕРОСИННЯ ДВОХ ПЛОЩИН

Через кожну пряму в просторі проходить безліч площин. Будь-які дві з них, перетинаючи, визначають її у просторі. Отже, рівняння будь-яких двох таких площин, що розглядаються спільно, являють собою рівняння цієї прямої.

Взагалі будь-які дві не паралельні площини, задані загальними рівняннями

визначають пряму їх перетину. Ці рівняння називаються загальними рівняннямипрямий.

приклади.

Побудувати пряму, задану рівняннями

Для побудови прямої достатньо знайти будь-які її точки. Найпростіше вибрати точки перетину прямої з координатними площинами. Наприклад, точку перетину з площиною xOyотримаємо з рівнянь прямий, вважаючи z= 0:

Вирішивши цю систему, знайдемо точку M 1 (1;2;0).

Аналогічно, вважаючи y= 0, отримаємо точку перетину прямої з площиною xOz:

Від загальних рівнянь прямої можна перейти до її канонічних або параметричних рівнянь. Для цього потрібно знайти якусь точку М 1 на прямий та напрямний вектор прямий.

Координати точки М 1 отримаємо з цієї системи рівнянь, надавши одній з координат довільне значення. Для пошуку напрямного вектора, зауважимо, що цей вектор повинен бути перпендикулярним до обох нормальних векторів. і . Тому за напрямний вектор прямий lможна взяти векторний витвірнормальних векторів:

.

приклад.Привести загальні рівняння прямої до канонічного вигляду.

Знайдемо точку, що лежить на прямій. Для цього виберемо довільно одну з координат, наприклад, y= 0 і розв'яжемо систему рівнянь:

Нормальні вектори площин, що визначають пряму, мають координати. Тому напрямний вектор прямий буде

. Отже, l: .


КУТ МІЖ ПРЯМИМИ

Кутомміж прямими в просторі будемо називати будь-який із суміжних кутів, утворених двома прямими, проведеними через довільну точку паралельно даним.

Нехай у просторі задані дві прямі:

Очевидно, що за кут між прямими можна прийняти кут між їх напрямними векторами і . Так як , то за формулою для косинуса кута між векторами отримаємо

Розділ V *. Рівняння прямих та площин у просторі.

§ 70. Умови паралельності та перпендикулярності двох прямих.

Прямі з напрямними векторами а і b :

а) паралельні тоді і лише тоді, коли вектори а і b колінеарні;

б) перпендикулярні тоді і лише тоді, коли вектори а і b перпендикулярні, тобто коли а b = 0.

Звідси отримуємо необхідні та достатні умови паралельності та перпендикулярності двох прямих, заданих канонічними рівняннями.

Для того щоб прямі

були паралельні, необхідно і достатньо, щоб виконувалася умова

У випадку, якщо якесь із чисел b 1 , b 2 , b 3 дорівнює нулю, то повинно звертатися в нуль відповідне число a 1 , a 2 , a 3 .

Для перпендикулярності прямих необхідно і достатньо, щоб виконувалася умова

a 1 b 1 + a 2 b 2 + a 3 b 3 = 0. (2)

Завдання 1.Серед наступних пар прямих вказати пари паралельних або перпендикулярних до прямих:

а) Напрямні вектори a = (2; 4; -13) та b = (3; 5; 2) очевидно, не колінеарні. Отже, прямі не паралельні. Перевіримо умову перпендикулярності

a 1 b 1 + a 2 b 2 + a 3 b 3 = 2 3 + 4 5 - 13 2 = 0.

Прямі перпендикулярні.

б) Напрямний вектор другої прямої має координати b = (3; 2; 4). За напрямний вектор першою примою можна взяти векторний добуток нормальних векторів
n 1 = (2; -3; 0) та n 2 = (4; -2; -2) площин, що задають цю пряму:

Умова (1) виконується, оскільки 6/3 = 4/2 = 8/4. Прямі паралельні.

в) Напрямний вектор першої прямої має координати а = (2; 3; 1). Рівняння другої прямої легко призводять до канонічного вигляду.

Отже, b =(- 1 / 2 ; 1; 3 / 2) .

Вектори а і b не паралельні. Вони й не перпендикулярні, оскільки

a 1 b 1 + a 2 b 2 + a 3 b 3 = 2 (- 1 / 2) + 3 + 3 / 2 =/= 0.

Дані прямі не паралельні та не перпендикулярні.

Завдання 2.Знайти рівняння прямої, що проходить через точку М 0 (2; -3; 4) перпендикулярно до прямого


Ця стаття про паралельні прямі і про паралельність прямих. Спочатку дано визначення паралельних прямих на площині та у просторі, введено позначення, наведено приклади та графічні ілюстрації паралельних прямих. Далі розібрано ознаки та умови паралельності прямих. У висновку показані рішення характерних завдань на доказ паралельності прямих, які задані деякими рівняннями прямої прямокутної системи координат на площині і в тривимірному просторі.

Навігація на сторінці.

Паралельні прямі основні відомості.

Визначення.

Дві прямі на площині називаються паралельнимиякщо вони не мають загальних точок.

Визначення.

Дві прямі в тривимірному просторі називаються паралельнимиякщо вони лежать в одній площині і не мають спільних точок.

Зауважте, що застереження «якщо вони лежать в одній площині» у визначенні паралельних прямих у просторі дуже важливе. Пояснимо цей момент: дві прямі в тривимірному просторі, які не мають спільних точок і не лежать в одній площині не є паралельними, а схрещуються.

Наведемо кілька прикладів паралельних прямих. Протилежні краї листа зошита лежать на паралельних прямих. Прямі, за якими площина стіни будинку перетинає площину стелі та підлоги, є паралельними. Залізничні колії на рівній місцевості також можна розглядати як паралельні прямі.

Для позначення паралельних прямих використовується символ «». Тобто якщо прямі а і b паралельні, то можна коротко записати а b .

Зверніть увагу: якщо прямі a і b паралельні, можна сказати, що пряма a паралельна прямий b , і навіть, що пряма b паралельна прямий a .

Озвучимо твердження, яке відіграє важливу роль щодо паралельних прямих на площині: через точку, що не лежить на даній прямій, проходить єдина пряма, паралельна даній. Це твердження приймається як факт (воно не може бути доведено на основі відомих аксіом планіметрії), і воно називається аксіомою паралельних прямих.

Для випадку у просторі справедлива теорема: через будь-яку точку простору, що не лежить на заданій прямій, проходить єдина пряма, паралельна даній. Ця теорема легко доводиться за допомогою наведеної вище аксіоми паралельних прямих (її доказ Ви можете знайти у підручнику геометрії 10-11 клас, який вказано наприкінці статті у списку літератури).

Для випадку у просторі справедлива теорема: через будь-яку точку простору, що не лежить на заданій прямій, проходить єдина пряма, паралельна даній. Ця теорема легко доводиться за допомогою наведеної вище аксіоми паралельних прямих.

Паралельність прямих - ознаки та умови паралельності.

Ознакою паралельності прямихє достатня умова паралельності прямих, тобто така умова, виконання якої гарантує паралельність прямих. Іншими словами, виконання цієї умови достатньо для того, щоб констатувати факт паралельності прямих.

Також існують необхідні та достатні умови паралельності прямих на площині та у тривимірному просторі.

Пояснимо зміст фрази «необхідна та достатня умова паралельності прямих».

З достатньою умовою паралельності прямих ми вже розібралися. А що ж таке? необхідна умовапаралельності прямих»? За назвою "необхідне" зрозуміло, що виконання цієї умови необхідне для паралельності прямих. Іншими словами, якщо необхідна умова паралельності прямих не виконано, то прямі не є паралельними. Таким чином, необхідна та достатня умова паралельності прямих- Це умова, виконання якого як необхідно, так і достатньо для паралельності прямих. Тобто, з одного боку це ознака паралельності прямих, з другого боку – це властивість, яким мають паралельні прямі.

Перш ніж сформулювати необхідну та достатню умову паралельності прямих, доцільно нагадати кілька допоміжних визначень.

Поточна пряма- Це пряма, яка перетинає кожну з двох заданих прямих.

При перетині двох прямих січної утворюються вісім нерозгорнутих. У формулюванні необхідної та достатньої умови паралельності прямих беруть участь так звані навхрест лежачі, відповідніі односторонні кути. Покажемо їх на кресленні.

Теорема.

Якщо дві прямі на площині пересічені січній, то для їх паралельності необхідно і достатньо, щоб навхрест кути, що лежали, були рівні, або відповідні кути були рівні, або сума односторонніх кутів дорівнювала 180 градусів.

Покажемо графічну ілюстрацію цієї необхідної та достатньої умови паралельності прямих на площині.


Докази цих умов паралельності прямих можна знайти у підручниках геометрії за 7 -9 класи.

Зауважимо, що ці умови можна використовувати і в тривимірному просторі – головне, щоб дві прямі та січна лежали в одній площині.

Наведемо ще кілька теорем, які часто використовуються за доказом паралельності прямих.

Теорема.

Якщо дві прямі на площині паралельні до третьої прямої, то вони паралельні. Доказ цієї ознаки випливає з аксіоми паралельних прямих.

Існує аналогічна умова паралельності прямих у тривимірному просторі.

Теорема.

Якщо дві прямі у просторі паралельні третьої прямої, всі вони паралельні. Доказ цієї ознаки розглядається на уроках геометрії у 10 класі.

Проілюструємо озвучені теореми.

Наведемо ще одну теорему, що дозволяє доводити паралельність прямих на площині.

Теорема.

Якщо дві прямі на площині перпендикулярні до третьої прямої, вони паралельні.

Існує аналогічна теорема для прямих у просторі.

Теорема.

Якщо дві прямі в тривимірному просторі перпендикулярні до однієї площини, вони паралельні.

Зобразимо малюнки, які відповідають цим теоремам.


Всі сформульовані вище теореми, ознаки та необхідні та достатні умови чудово підходять для доказу паралельності прямих методами геометрії. Тобто, щоб довести паралельність двох заданих прямих потрібно показати, що вони паралельні третьої прямої, або показати рівність навхрест кутів, що лежать, і т.п. Безліч подібних завдань вирішується під час уроків геометрії у неповній середній школі. Однак слід зазначити, що у багатьох випадках зручно користуватися методом координат для доказу паралельності прямих на площині або тривимірному просторі. Сформулюємо необхідні та достатні умови паралельності прямих, які задані у прямокутній системі координат.

Паралельність прямих у прямокутній системі координат.

У цьому пункті статті ми сформулюємо необхідні та достатні умови паралельності прямиху прямокутній системі координат залежно від виду рівнянь, що визначають ці прямі, а також наведемо докладні розв'язки характерних завдань.

Почнемо з умови паралельності двох прямих на площині прямокутної системі координат Oxy . В основі його доказу лежить визначення напрямного вектора прямоїі визначення нормального вектора прямоїна площині.

Теорема.

Для паралельності двох неспівпадаючих прямих на площині необхідно і достатньо, щоб напрямні вектори цих прямих були колінеарні, або нормальні вектори цих прямих були колінеарні, або напрямний вектор однієї прямої був перпендикулярний до нормального вектора другої прямої.

Очевидно, умова паралельності двох прямих на площині зводиться до (напрямних векторів прямих або нормальних векторів прямих) або до (напрямного вектора однієї прямої та нормального вектора другої прямої). Таким чином, якщо і - напрямні вектори прямих a і b а і - нормальні вектори прямих a і b відповідно, то необхідна та достатня умова паралельності прямих а та b запишеться як , або , або де t - деяке дійсне число. У свою чергу координати напрямних та (або) нормальних векторів прямих a та b знаходяться за відомими рівняннями прямих.

Зокрема, якщо пряму a у прямокутній системі координат Oxy на площині задає загальне рівняння прямоївиду , а пряму b - то нормальні вектори цих прямих мають координати і відповідно, а умова паралельності прямих a і b запишеться як .

Якщо прямий a відповідає рівняння прямої з кутовим коефіцієнтомвиду , а прямий b - , то нормальні вектори цих прямих мають координати і , а умова паралельності цих прямих набуде вигляду . Отже, якщо прямі на площині прямокутної системі координат паралельні і можуть бути задані рівняннями прямих з кутовими коефіцієнтами, то кутові коефіцієнти прямих будуть рівні. І навпаки: якщо прямі, що не збігаються, на площині в прямокутній системі координат можуть бути задані рівняннями прямої з рівними кутовими коефіцієнтами, то такі прямі паралельні.

Якщо пряму a та пряму b у ​​прямокутній системі координат визначають канонічні рівняння прямої на площинівиду і , або параметричні рівняння прямої на площинівиду і відповідно, напрямні вектори цих прямих мають координати і , а умова паралельності прямих a і b записується як .

Розберемо рішення кількох прикладів.

приклад.

Чи паралельні прямі і?

Рішення.

Перепишемо рівняння прямої у відрізкаху вигляді загального рівняння прямої: . Тепер видно, що – нормальний вектор прямий , а нормальний вектор прямий . Ці вектори не колінеарні, тому що не існує такого дійсного числа t , для якого правильна рівність ( ). Отже, не виконується необхідна та достатня умова паралельності прямих на площині, тому задані прямі не паралельні.

Відповідь:

Ні, прямі не паралельні.

приклад.

Чи є прямі та паралельними?

Рішення.

Наведемо канонічне рівнянняпрямий до рівняння прямий із кутовим коефіцієнтом: . Вочевидь, що рівняння прямих і однакові (у разі задані прямі були б збігаються) і кутові коефіцієнти прямих рівні, отже, вихідні прямі паралельні.

Поділіться з друзями або збережіть для себе:

Завантаження...